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A vortex in an infinite viscous fluid

By ROBERT R. LONG
Department of Mechanics, The Johns Hopkins University

(Received 23 June 1961)

A solution is given for a viscous vortex in an infinite liquid. Similarity arguments
lead to a reduction of the equations of motion to a set of ordinary differential
equations. These are integrated numerically. A uniform feature is the constant
circulation K outside the vortex core, which is also a viscous boundary layer. The
circulation decreases monotonically towards the axis. The axial velocity profiles
and the radial velocity profiles have several characteristic shapes, depending on
the value of the non-dimensional momentum transfer M. The solution has a
singular point on the axis of the vortex. The radius of the core increases linearly
with distance along the axis from the singularity, and, at a given distance, is
proportional to the coefficient of viscosity and inversely proportional to K.

Finally, a discussion is given to indicate that intense vortices above a plate,
like the confined experimental vortex, or above the ground, like the atmospheric
tornado and dust whirl, will not resemble the theoretical vortex except, possibly,
far above the plate.

1. Introduction

This paper extends an earlier investigation (Long 1958) of a vortex in an infinite
viscous liquid. The earlier paper contained the general form of the solution to-
gether with the set of ordinary non-linear differential equations to which the
Navier-Stokes equations reduce. These ordinary differential equations can be
simplified by a boundary-layer approximation. The simplified equations have
now been integrated numerically for a considerable range of the single governing
parameter, and the numerical results are presented below.

This study was motivated by an experiment with a hydrodynamic ‘sink’ at
the axis of a tall rotating cylinder of water (Long 1956). When the sink was very
weak the fluid approached in an intense vortex along the axis of rotation (figure 1,
plate 1). Observations of this vortex suggested the general form of the theory as
developed in the first paper, in particular the boundary-layer nature of the core
and the tendency for a ‘vr-vortex’ to arise outside the core.

Although it was originally thought that the theoretical and experimental
vortices might be closely related, a recent comparison of the numerical and
theoretical results showed that there are fundamental differences that arise,
apparently, from the presence of the boundaries in the experiment. The fluid in
the core of the vortex of figure 1 (plate 1) originates in the boundary layer on the
lower plate, and the effect of friction, as this fluid moves over the relatively short
distance from the lower plate to the sink, is doubtless too slight to produce the
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612 R. R. Long

kind of velocity profile found in the theory of this paper. The present theory
should be applicable to a vortex above a plate, as in figure 1, but only at much
greater distances from the plate than the metre or so that was available in this
experimental set-up. This is discussed at greater length in §5 below.

2. Review of theory

We present here, briefly, the essential parts of the theory of the viscous vortex,
including some of the work of the earlier paper (Long 1958). We assume the
existence of a laminar vortex in an infinite viscous liquid centred at the axis
of a cylindrical co-ordinate system (r, ¢, z). The motion is axisymmetric, and the
fluid has a constant density p and kinematic coefficient of viscosity v. The
equation of continuity implies a stream function ¢(r, z) such that

_loy 19y
“Tree Yo M
dr dz
where U=, W= (2)

The third component of velocity is
v=r E . : (3)

We assume that the circulation »r tends to a constant K at great enough
distances from the axis. Another fundamental constant of the problem is the
kinematic momentum transfer

27 o
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where P = p/p+gz. We may show that the integral in (4) is constant by
integrating the vertical component of the equations of motion over a plane
perpendicular to the vortex axis and assuming that the velocities go to zero
sufficiently fast at great distances from the axis.

If we suppose now that the conditions of the problem introduce no other
parameters, then ¢, v and P are functions of r, 2, J, K, v only. A dimensional
analysis leads to the form of the solution

4
Y =vf), v=2D@), P=—1s), ®)
K v K Kr
wzr_ﬁf’ u=—;f+;ﬁf, Z/=E\/—» (6)

where f, I', s are functions also of the inverse Reynolds number and non-dimen-
sional momentum transfer
v J

M= - (7)

=r 7

The assumed solution has a singularity at z = 0, r = 0. A prominent feature of
the motion is that the circulation vr is constant on cones with apexes at the
singular point.
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Substituting into the equations of motion in cylindrical co-ordinates, we find
that the functions f, I', s must satisfy the equations (Long 1958)

[24 2% = —eX(f2—ff'y+ "+ 8yts —yf '+ 4y°8') — e*(29%f"), (8)
Fy—F'(A—f)— 4y = —e*(2f"y°), 9)
Iy —T'(1—f) = —eX(20"y8 +41Vy?). (10)

Obviously a boundary-layer approximation, €2 < 1, is in order, and we will con-
fine attention to such cases. Our equations are then

T2+ 243" =0, (11)
Fy—f(—=f)—4y’ =0, (12)
Iy —T"(1—f) = 0. (13)

3. Numerical solution

Solutions of equations (11)-(13), subject to physical boundary conditions,
were obtained numerically on an IBM 704 electronic computer. If we impose
finiteness conditions at the axis y = 0, the solution of (11)-(13) near y = 0 is

f=ay*+a,y*+..., (14)

I'=by2+byy*+..., (15)

s=c+cy?+..., (16)
where ay = %tc—1a?, by= —1ba, c,= —1b% ..,

and in general all coefficients are functions of @, b, ¢. On the other hand, the system
(11)-(13) has an asymptotic solution at large y of the form

f=htbH+Bfat - (17)
=+ 8+ 5T+ ..., (18)
8 = Co+ C3[4y%+ fis, + 28, + ... (19)

Here, 8, ¢, and ¢, are constants, and f, satisfies the differential equation

foy—fo(1—fo) — 4yPc,—ciy = O.

The functions f,, I,,, s, all satisfy conditions of the form f,/f,_, — 0 at large y.
There is a total of five arbitrary constants in (17)—(19), so that it is reasonable to
agsume that solutions (for arbitrary choice of a, b, ¢, for example) have the

behaviour Ff, (20)
I'»e¢, (21)
8 — ¢+ /4y, (22)

as y — 00. This assumption was the basis of the numerical integration.

Two conditions must be imposed as y — co: (1) ¢, = 0, insuring uniform (zero)
pressure far from the vortex axis; (2) ¢; = 1, insuring that the circulation tends
to K. We see then that one of the constants a, b, ¢ is arbitrary. Alternatively,
the problem is determined by specifying the constant non-dimensional momen-
tum transfer, M.
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When ¢, = 1 and ¢, = 0, we may substitute Iy = 1, s, = 1/4y2 into (11)—(13)
and obtain a single differential equation for f,. This equation may be solved quite
generally, and it is found that the solution tends to 1 + y, which is also a particular
solution of the differential equation. With f > 1+y, I' > 1, we can write down
the behaviour at infinity of the velocity components:

v —. (23)

v
U—> —— -
r’ ry2’ r

We may now proceed as follows. Define

r=cty, A= —ac?t, B=bcH (24)
z, = 1T, (25)
2y = ¢ lg, (26)
2= —cfly, (27)
2y = c¥f'[y, (28)
zs = ¢V |y. (29)
The differential equations become
2, = x2g, (30)
2y = — 22223, (31)
2y = —24— 2%, (32)
2y = W25+ 242, (33)
25 = 2325, (34)
where the dot denotes differentiation with respect to . The solutions near z = 0
are 2, = Ba?+ Byat+ ..., (35)
o= 14ypx?+.., (36)
zg=Ax+A2%+..., (37)
2a= —24—4A, 2%+ ..., (38)
zs=2B+4B,2*+ ..., (39)

where By, B, ..., Vs, Vs, .., As, Ay, ... involve only A and B. A five-point finite
difference formula (Fox 1957) was substituted for the derivatives in (30)—(34),
arbitrary values of 4 and B were assigned, and (30)-(34) were integrated step-
by-step for intervals of Az = 0-01. (The first four values of z; and Z; were ob-
tained from the Taylor series (35)-(39).) At each step, a computation was made
of

a, =2 _A
n = “2 4.’122.

This quantity tends to a constant at large . When |e, ., —a,] fell below 10-8,

the forward integration was stopped and the last «, (= &) was recorded. Holding

B fixed, A was varied, a new integration was performed and a new & obtained.

A linear extrapolation was then made using the two A’s and the two associated

values of ¢ to form an estimate of 4 corresponding to & = 0. The procedure was
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continued until an 4 was obtained with an associated & of absolute value below
10-3, Over the entire range of the integration it was only necessary to integrate
forward to values of z of 4 or 5.

The final pair (4, B) obtained in this manner corresponds to a solution of the
problem if, according to (25), we take the resulting asymptotic value of 2, to be
¢71, since then we have I' > 1 and s — 0. When, at any stage, a final pair (4, B)
was obtained with the desired || < 10-3, the search for the next pair, correspond-
ing to a new value of B, was begun by using the two new trial pairs (4, B F 0-02),
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Ficure 2. Plots of curves A = A(B) and M = M(B).

(4 +0:02, B ¥ 0-02) depending on whether the march along the curve 4 = A(B)
in the A-B plane was toward lower B or higher B. This procedure was suggested
by a few hand integrations which indicated that the curve 4 = A(B) has a
slope of the order of —1. (Actually the curve has a slope of approximately — 2B
throughout the range.) The interval in B was increased to 0-04 and 0-05 for large
B. Finally, it should be mentioned that the search for the curve 4 = A(B) was
begun by using two initial pairs for (4, B): (0497, 0-660) and (0-510, 0-660).
The hand integrations showed that the curve 4 = A(B) lies in the vicinity of
these two points.

4. Results of numerical integration

A large number of numerical solutions were obtained at intervals of 0-02
or 0-04 or 0-05 in B over the ranget 0-18 < B < 10-02. Figure 2 is a plot of the
two curves 4 = A(B)and M = M(B), and table 1 is a list of the triples of numbers
(4, B, c*). As mentioned above, 4 decreases regularly as B increases. A sur-
prising result is that the non-dimensional momentum transfer does not uniquely
determine the flow; above a minimum M there are two solutions for each M.

+ If the pair (4, B) yields a solution, (4, — B) is a solution with the same velocity and
pressure fields except for a reverse circulating motion. This is easily seen from the form of

the Taylor series expansion. The convergence of the present method of finding solutions
became slower and slower near B = 0, and it was necessary to stop at B = 0-18.
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Since M = J/K2, where J is the kinematic momentum transfer, J must be posi-
tive and larger than a critical value J, = 3-65K2. ‘

The velocity and pressure profiles are given in a series of figures. In figures 3-9,
we see that the axial velocity at the axis is away from the point of singularity in
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Ficure 3. w-curve: B = 0-180.
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most of the solutions. There is a solution (figure 5), however, in which the axial
velocity at the axis of the core is precisely zero, and there is a range (4 > 0)
in which the velocity is toward the singularity. As A decreases from zero to
— /2 there is a deficiency of velocity at the axis. This is finally wiped out for
A < —,/2 and for larger A there is simply a thin upward jet in the vortex core.
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Ficure 8. w-curve: B = 5-02.
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These features of the axial velocity profile are understandable from the view-
point of energy variation. Thus, it is easily shown that if Z is the total of pressure
energy and kinetic energy, the energy variation following particles moving along
the axis is dE 2KScEA (A2
AR ('5* 1)-

For example, when the velocity is away from the singularity (4 < 0) and in the
range A? < 2, the particle gains energy from its surroundings, as the faster
moving fluid just out from the axis exerts a drag in the direction of the flow.
When (0 < 4 < 4/2) the fluid moving toward the singularity is imbedded in fluid
moving the other way. The result is a loss of energy to the surroundings. Trial
integrations for 4 > ,/2 suggested that there is no branch of the 4 = A(B) curve
for this range of A.
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Figure 9. w-curve: B = 10-02.
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Figure 10. v-curve: B = 0-180.

The theoretical behaviour of the axial velocity far from the axisis w — K/r,/2,
and this was verified by all the numerical integrations.

The circulating velocity curves (figures 10-13) are all similar. We see, however,
in figure 13, that as B tends to infinity the swirling motion approaches solid rota-
tion in the core, changing more and more abruptly to a vr-vortex outside. In all
cases, of course, v > K/r as r —> o0.
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The outward-motion curves or u-curves (figures 14-17) have two characteristic
shapes. In all cases there is inward motion at the outer edges of the vortex, as
indicated by the theoretical behaviour « - —v/r, and outward motion in most
of the vortex core. In some cases, however, as in figures 14 and 15, inward motion
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Ficure 14. wu-curve: B = 0-180.
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can occur near the axis. It is important to notice, of course; that v and w are large

and of the same order (~ K/r) while u is extremely small in a well-developed
vortex.
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The pressure is determined completely by the centrifugal force in the boundary-
layer approximation, so that it drops monotonically from zero outside to a
negative minimum at the axis, as shown in figures 18 and 19.

The radius of the vortex boundary layer, &, is an interesting feature of the
solution. Over the entire range of the numerical integrations, the value of z at,
say, maximum v, decreases only by a factor of 2 orso. If we neglect this variation
we can write & ~ (zv/K)ct.

5. Vortices in confined fluids

Intense vortices occur frequently in fluids. One kind is the ‘bathtub drain’
vortex which is characterized by the presence of a free surface, and is probably
not related closely, if at all, to the vortex of this paper. Another is the vortex
without free surface which has a rigid boundary like the bottom of the vessel in
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Fioure 20. Schematic picture of plate boundary layer.

the experiment of figure 1. The latter may be closely related to the meteorological
vortices, tornadoes, dust whirls and water spouts (if we adopt the virtual viscosity
concept), although the atmospheric vortices are probably ‘buoyancy driven’
rather than ‘momentum driven’. It seems very likely that tornadoes, forexample,
are vr-vortices. We have at least one very reliable set of observations that indi-
cates this, namely eight pressure observations in the outskirts of a tornado that
passed through an NACA laboratory in Cleveland, Ohio (Lewis & Perkins 1953).
They yielded the precise pressure distribution of a vr-vortex if we assume a
balance of centrifugal and pressure gradient forces as in the vortex of this paper.
The pressure observations were at the ground, and if we assume that they reflect
the velocity of circulation in the free air, rather than in the ground boundary
layer (as supposed by Lewis & Perkins) we obtain a reliable estimate of K of
7:5 x 107 cm?/sec.

We can imagine a schematic picture of flow from the plate or ground boundary
layer in the experimental and geophysical vortices as in figure 20, and it is
tempting to try to fit one of the theoretical vortices of this paper (4 < —,/2)
to this flow with a virtual source at some great distance below the plate.
One would have to suppose that the velocity distribution as the fluid leaves the
plate is nearly the same as in the infinite vortex at some definite section.
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In fact this is far from the truth in the experiment. Measurements show, for
example, that w drops off much faster than K/r./2 at the outer edge of the core.
We cannot hope, therefore, to get agreement between experiment and theory
unless we compare them at such a great distance from the plate that the slight
viscous effect will have enough time to cause a change of velocity distribution from
that which the fluid has when it leaves the plate boundary layer to that which it
has in the infinite vortex. A plausible estimate of this distance Az can be obtained
by assuming that the theoretical vortex of this paper must suffer a change of
radius Aé over this distance of the same order as the radius ¢ itself just above
the plate. Thus, from (6), we have Az/A8 ~ 1/ec—t, and, putting A8/§ ~ 1, we get
Az ~ 8fect. Since ¢t ~ 1 and, in the experiment, § ~ 1cm, € ~ 10~3, we would
need a height Az ~ 103 em before we could expect any significant effect of vis-
cosity transforming the vortex into one resembling the theoretical vortex of this
paper. A similar calculation for a tornado yields 10% ecm, or about the depth of the
troposphere, if we take ¢ = 10~2. The above reasoning indicates that the experi-
mental vortex as observed in the laboratory is not a member of the family of
vortices of this paper, and a separate theory is necessary to discuss its features.
This may also be true of atmospheric vortices, at least near the ground.

The research was supported by the Office of Naval Research and the U.S.
Weather Bureau. The author wishes to thank Dr Joseph Smagorinsky for his
help in the computational work of the paper.
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A B ct A B c-t A B ct A B c-t A B c-%
1-26 0-160 4-45 —-0-838 1-:20 2-36 — 6-89 2-66 1-37 —24-5 492 0786 - 582 752 0-51b6
1-24 0-180 4-35 —0-896 1.22 2:3¢ ~— 7-11 2:70 1:36 —250 497 0778 — 590 7-57 0-511
1-21 0200 4-26 —0-953 1-24 2:32 — 7-33 2:74 1:34 -255 502 0771 — 598 7-62 0-508
1-19 0-220 4-18 —1-01 1-26 230 — 7.-56 2-78 1-32 —26-0 507 0763 ~— 60-6 7-67 0-504
1-16 0240 4-11 -—-1-07 128 2:28 — 7.79 2-82 1:31 —26-6 512 0756 — 614 772 0-501
1-13 0-260 4-04 —~1-13 1-30 2:26 — 8-03 2-86 1-29 —27-1 517 0749 — 62-2 777 0-498
1-11 0-280 3-97 -—-1-19 132 2:24 — 826 2:90 1-28 —27-6 522 0742 — 63-1 7-82 0-495
1-08 0-300 3-90 -—-1-25 1:3¢ 2:22 — 851 2:94 1-26 —28:2 527 0735 — 63-9 7-87 0491
1-05 0-320 3-84 —1-32 136 220 — 875 2:98 1:25 —28-7 532 0728 ~— 647 792 (-488
1-02 0-340 3-78 -—1-38 138 2:18 ~— 9-00 3-02 1-23 —-29-3 537 0721 -~ 655 17-97 0485
0-991 0360 3-73 —1-41 1-39 217 — 925 3-06 1-22 —29-8 542 0715 — 664 8-02 0482
0-960 0-380 368 —144 140 2:16 — 950 3-10 1-21 —304 547 0-708 — 67-2 807 0479
0-929 0400 362 —147 141 2:15 — 976 3-14 1:19 —31-0 5-52 0-702 — 681 812 0476
0-897 0420 3-57 -—1-61 142 215 —10-0 3-18 1:18 —31-56 557 0696 — 69-0 8-17 0473
0-864 0-440 3-53 —1-54 143 2:14 —10-3 3-22 1-17 -—32-1 562 0690 — 69-9 822 0470
0-831 0460 348 —1-57 144 2:13 —106 3:26 1-15 —32-7 567 0684 — 707 827 0467
0:797 0480 344 —160 145 212 —10'8 330 1:14 —333 572 0678 — 71-6 832 0464
0-763 0-500 3-39 —1-64 146 2:11 -~-11-1 3-34 1-13 —~339 577 0672 — 725 837 0461
0-728 0-520 335 -—1-67 147 210 —11-4 3-38 1:12 —345 582 0666 — 734 842 0459
0-692 0540 331 —1-70 148 2:09 ~—11-6 342 1-11 —35-1 5-87 0660 — 74:3 847 0:456
0-656 0-560 3-27 —1.73 149 208 —11-9 346 1-09 —357 592 0655 — 752 852 0453
0-619 0-580 323 -—1-97 150 208 —12-2 3.50 1-08 —36-3 597 0649 — 76-1 857 0-450
0-581 0600 3-19 -—1-84 1-52 207 —125 354 1-07 —37-0 6-02 0644 — 770 862 0-448
0543 0620 3-16 —1-90 1-54 204 —12-8 3-58 1-06 —376 607 0639 — 779 867 0445
0-504 0-640 3-12 —1-97 156 202 —13-1 362 1-05 —38-2 6-12 0-634 — 789 872 0-442
0-465 0-660 3-08 —2-04 1-58 201 —134 366 1-04 —-389 6-17 0628 — 79-8 877 0440
0-425 0680 305 —2-18 162 198 —137 370 1-03 —39:5 622 0623 — 80-7 8-82 0437
0:384 0-700 3-02 -—-2:33 1-66 195 —14.0 374 1-02 —40-2 6-27 0-618 — 817 887 0-435
0-343 0720 2-98 —247 170 192 —14-3 3-78 1:01 —40-8 6-32 0613 — 826 892 0432
0-301 0-740 295 —262 174 189 —146 3-82 1:00 —41-5 6:37 0609 — 83-6 897 0430
0-2568 0-760 2-92 -—2.78 1.78 1-87 —149 3:86 0990 —42:1 642 0604 — 845 902 0-427
0-215 0-780 2-89 —2.93 1-82 1-83 —152 3.90 0-981 -—42-8 6:47 0599 — 855 907 0425
1-171 0-800 2-86 -—3-09 186 1-:80 —156 394 0971 —43-5 652 0-595 — 865 9-12 0:422
0-126 0-820 2-83 —3-25 190 176 —15-9 3-98 0962 —44-2 6-57 0590 — 87-5 917 0-420
0-082 0-840 2-80 —342 194 175 —162 4-02 0953 —44-9 662 0-586 — 885 9-22 0418
0-036 0-860 277 --3-58 198 1-72 -—-16-6 4-07 0-942 —456 667 0581 — 894 9-27 0-415
—0-010 0-880 275 —375 2.02 170 —17-1 412 0931 —46-3 672 0577 — 904 932 0413
—0-057 0900 272 —3-93 2-06 1-68 —17-5 4-17 0921 —47-0 677 0572 -— 914 937 0-411
-0-105 0920 269 —4-10 2-10 165 —17-9 422 0911 —477 682 0-568 — 924 9-42 0-409
—0-153 0-940 2-66 —4-28 2-14 163 —184 4-27 0900 —484 6-87 0564 — 93-5 947 0-406
—0-202 0960 264 —4-46 2-18 1-61 —18-8 4-32 0-801 —49-1 692 0560 — 945 9-52 0-404
—0-251 0-980 2-61 -—-4-65 222 1-58 -—-19-2 4-37 0881 —49-8 6-97 0556 — 955 957 0:402
—0-301 1-00 259 —4-84 2.26 156 —19:7 442 0871 —50-6 702 0552 — 96:5 962 0400
— 0352 1:02 2-56 -—503 2.30 1-54 -—20-1 4-47 0862 —51-3 7-07 0-548 — 97-6 9-67 0-398
—0-403 1-04 2-54 —5-22 234 1-52 —206 4-52 0853 -—52-1 7-12 0544 —~ 986 972 0-396
—0-456 1-06 252 —542 2-38 1-50 —21-1 4-57 0-844 —52-8 7-17 0540 — 99:7 977 0-394
—0-508 1-08 249 —562 242 148 —21-6 462 0835 —536 722 05636 —100-7 9-82 0-392
—0-562 1-10 2-47 —5-82 2-46 146 —22.0 4-67 0827 —54-3 7-27 0-533 —101-8 9-87 0-390
—0-616 1-12 245 —6-03 250 1-44 —22-5 472 0-818 -—55-1 17-32 0529 —102-8 992 0-388
— 0670 1-14 242 —6-24 254 1.43 —-23-0 477 0810 —559 737 0-525 ~—103-9 9-97 0-385
—0-726 1-16 240 —645 258 141 —235 4-82 0802 —56:6 742 0522 —105-0 10-02 0-383
—0-782 1-18 2:38 —667 262 1-39 240 4-87 0-794 —57-4 747 0-518 — —_ —_—

TaBLE 1, List of triples (4, B, ¢—1) yielded by numerical integration.
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Freure 1 (Prate 1). Experimental vortex. This vortex is created by withdrawing watoer
from the axis of a rotating vessel 1 m high and 30 cm in diameter. The sink is just below the
free surface at the top of the figure. The motion near the axis is one of strong rotation super-
imposed on a strong motion toward the sink. This is indicated by the spiral nature of the
streaks on the !-second time-exposure caused by the aluminum tristearate tracer. The
vortex extends to the bottom of the vessel where there is a layer of particles. This explains
the dense collection of particles near the axis.

LONG (Facing p. 624)



