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A vortex in an infinite viscous fluid 

By ROBERT R. LONG 
Department of Mechanics, The Johns Hopkins University 

(Received 23 June 1961) 

A solution is given for a viscous vortex in an infinite liquid. Similarity arguments 
lead to a reduction of the equations of motion to a set of ordinary differential 
equations. These are integrated numerically. A uniform feature is the constant 
circulation K outside the vortex core, which is also a viscous boundary layer, The 
circulation decreases monotonically towards the axis. The axial velocity profiles 
and the radial velocity profiles have several characteristic shapes, depending on 
the value of the non-dimensional momentum transfer M .  The solution has a 
singular point on the axis of the vortex. The radius of the core increases linearly 
with distance along the axis from the singularity, and, at a given distance, is 
proportional to the coefficient of viscosity and inversely proportional to K .  

Finally, a discussion is given to indicate that intense vortices above a plate, 
like the confined experimental vortex, or above the ground, like the atmospheric 
tornado and dust whirl, will not resemble the theoretical vortex except, possibly, 
far above the plate. 

1. Introduction 
This paper extends an earlier investigation (Long 1958) of a vortex in an infinite 

viscous liquid. The earlier paper contained the general form of the solution to- 
gether with the set of ordinary non-linear differential equations to which the 
Navier-Stokes equations reduce. These ordinary differential equations can be 
simplified by a boundary-layer approximation. The simplified equations have 
now been integrated numerically for a considerable range of the single governing 
parameter, and the numerical results are presented below. 

This study was motivated by an experiment with a hydrodynamic ‘sink ’ at 
the axis of a tall rotating cylinder of water (Long 1956). When the sink was very 
weak the fluid approached in an intense vortex along the axis of rotation (figure 1, 
plate 1). Observations of this vortex suggested the general form of the theory as 
developed in the first paper, in particular the boundary-layer nature of the core 
and the tendency for a vr-vortex ’ to arise outside the core. 

Although it was originally thought that the theoretical and experimental 
vortices might be closely related, a recent comparison of the numerical and 
theoretical results showed that there are fundamental differences that arise, 
apparently, from the presence of the boundaries in the experiment. The fluid in 
the core of the vortex of figure 1 (plate 1) originates in the boundary layer on the 
lower plate, and the effect of friction, as this fluid moves over the relatively short 
distance from the lower plate to the sink, is doubtless too slight to produce the 
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kind of velocity profile found in the theory of this paper. The present theory 
should be applicable to a vortex above a plate, as in figure 1, but only at  much 
greater distances from the plate than the metre or so that was available in this 
experimental set-up, This is discussed at  greater length in 3 5 below. 

2. Review of theory 
We present here, briefly, the essential parts of the theory of the viscous vortex, 

including some of the work of the earlier paper (Long 1958). We assume the 
existence of a laminar vortex in an infinite viscous liquid centred at the axis 
of a cylindrical co-ordinate system (r, 4 , ~ ) .  The motion is axisymmetric, and the 
fluid has a constant density p and kinematic coefficient of viscosity v. The 
equation of continuity implies a stream function +(r, z )  such that 

where 
dr dz us- &’  W = g *  

The third component of velocity is 

We assume that the circulation vr tends to a constant K a t  great enough 
distances from the axis. Another fundamental constant of the problem is the 
kinematic momentum transfer 

J = s,””/: (P+w2) rdrd$ ,  (4) 

where P = p/p+gz.  We may show that the integral in (4) is constant by 
integrating the vertical component of the equations of motion over a plane 
perpendicular to the vortex axis and assuming that the velocities go to zero 
sufficiently fast at great distances from the axis. 

If we suppose now that the conditions of the problem introduce no other 
parameters, then @, v and P are functions of r, x ,  J ,  K ,  v only. Adimensional 
analysis leads to the form of the solution 

where f,  I?, s are functions also 
sional momentum transfer 

v K  Kr 
u=--f+-fl ,  y=- 

r 2 4 2  vzJ2’ 

of the inverse Reynolds number and non-dimen- 

The assumed solution has a singularity at z = 0, r = 0. A prominent feature of 
the motion is that the circulation vr is constant on cones with apexes at the 
singular point. 
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Substituting into the equations of motion in cylindrical co-ordinates, we find 
that the functions f, I?, s must satisfy the equations (Long 1958) 

r2+ 2y3s’ = - 62(f2-jyY + yy + ~~4~ - yf’ + 495s’) - €4(2y4f”), 

yY -y(i -f) - 4y3s = - €2(2yy3), 

r‘ty- ryi - j )  = - q 2 r ” y 3  + 4 r y ) .  

(8) 

(9) 

(10) 

Obviously a boundary-layer approximation, 8 < 1, is in order, and we will con- 
fine attention to such cases. Our equations are then 

3. Numerical solution 
Solutions of equations (1 1)-( 13), subject to physical boundary conditions, 

were obtained numerically on an IBM704 electronic computer. If we impose 
finiteness conditions a t  the axis y = 0, the solution of (1 1)-( 13) near y = 0 is 

f = ay2+a4y4+ ..., (14) 

I’ = by2+b4y4+ ..., (15) 

s = c+c,y2+ ...) (16) 
where a4 = &-&2, b - - -- iba, c2 = -Qb2, ...) 
and in general all coefficients are functions of a, b, c. On the other hand, the system 
(1 1)-( 13) has an asymptotic solution at large y of the form 

f = f o  + Pfl + P”fi + . . . 7  

r = cl+prl+p2rz+ ..., 
s = Cz+C~/4y2+~Sl+p2S2+ .... 

Here, P, c1 and c2 are constants, and f o  satisfies the differential equation 

f ly  - fi( 1 - f,) - 4y3c2 - c; y = 0. 

The functions f,, I?,, s, all satisfy conditions of the form f,lf,-l -+ 0 a t  large y. 
There is a total of five arbitrary constants in (17)-( 19), so that it is reasonable to 
assume that solutions (for arbitrary choice of a, b,  c, for example) have the 
behaviour 

120) 

-+ c1, (21) 

(22) 

f +fat 

s -+ c2 + c;/4y2, 

as y -+ co. This assumption was the basis of the numerical integration. 
Two conditions must be imposed as y -+ 00: (1) c2 = 0, insuring uniform (zero) 

pressure far from the vortex axis; (2) c1 = 1, insuring that the circulation tends 
to K .  We see then that one of the constants a, b, c is arbitrary. Alternatively, 
the problem is determined by specifying the constant non-dimensional momen- 
tum transfer, M .  
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When c1 = 1 and c2 = 0, we may substitute ro = 1, so = 1/4y2  into (11)-(13) 
and obtain a single differential equation forto. This equation may be solved quite 
generally, and it is found that the solution tends to 1 + y, which is also a particular 
solution of the differential equation. Withf-t 1 +y, I’ -+ 1, we can write down 
the behaviour at  infinity of the velocity components: 

I.’ K K 
a+--, W - f -  v+-* 

r r ,I2 ’ r 

We may now proceed as follows. Define 

The differential equations become 

z1 = XZ5, 

2 ,  = -z;/2x3, 

x3 = - z4 - z3/x,  

x4 = 4XZ2 + z3z4, 

25 = 23257 

where the dot denotes differentiation with respect to x .  The solutions near x = 0 
are 

(35) z1 = B x 2 + B 4 x 4 +  ..., 
z2 = l + y , x Z +  ..., (36) 

z3 = A x + A 3 x 3 +  ...) (37) 

24 = - 2 A - 4 A 3 x 2 + . . . ,  (38) 

25 = 2 B + 4 B 4 x 2 +  ..., (39) 

where B4,  B, ,  . . . , yz, y4, . . ., A , ,  A,, . . . involve only A and B .  A five-point finite 
difference formula (Fox 1957) was substituted for the derivatives in (30)-(34), 
arbitrary values of A and B were assigned, and (30)-(34) were integrated step- 
by-step for intervals of A x  = 0.01. (The first four values of z6 and 2, were ob- 
tained from the Taylor series (35)-(39).) At each step, a computation was made 
of 

a, = z2-- 

This quantity tends to a constant a t  large x .  When lan+l-anl fell below 10-6, 
the forward integration was stopped and the last a, ( = 6) was recorded. Holding 
B $xed, A was varied, a new integration was performed and a new 6 obtained. 
A linear extrapolation was then made using the two A’s and the two associated 
values of 6 to form an estimate of A corresponding to 6 = 0. The procedure was 

2; 

4x8’ 
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continued until an A was obtained with an associated S of absolute value below 
Over the entire range of the integration it was only necessary to integrate 

forward to values of x of 4 or 5. 
The final pair (A,  B )  obtained in this manner corresponds to a solution of the 

problem if, according to (25), we take the resulting asymptotic value of z1 to be 
c-4, since then we have I' +- 1 and s -+ 0. When, at any stage, a final pair (A,  B)  
was obtained with the desired IS[ < the search for the next pair, correspond- 
ing to a new value of B, was begun by using the two new trial pairs (A ,  B T 0*02), 
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FIGURE 2. Plots of curves A = A ( B )  and M = M ( B ) .  

( A  f 0.02, B T 0-02) depending on whether the march along the curve A = A(B)  
in the A-B plane was toward lower B or higher B. This procedure was suggested 
by a few hand integrations which indicated that the curve A = A(B)  has a 
slope of the order of - 1. (Actually the curve has a slope of approximately - 2B 
throughout the range.) The interval in B was increased to 0.04 and 0.05 for large 
B. Finally, it  should be mentioned that the search for the curve A = A ( B )  was 
begun by using two initial pairs for (A,  B ) :  (0.497, 0.660) and (0.510, 0.660). 
The hand integrations showed that the curve A = A(B) lies in the vicinity of 
these two points. 

4. Results of numerical integration 

A large number of numerical solutions were obtained at intervals of 0.02 
or 0.04 or 0.05 in B over the ranget 0.18 < B < 10.02. Figure 2 is a plot of the 
two curves A = A(B)  and M = M ( B ) ,  and table 1 is a list of the triples of numbers 
(A ,  B, d). As mentioned above, A decreases regularly as B increases. A sur- 
prising result is that the non-dimensional momentum transfer does not uniquely 
determine the flow; above a minimum M there are two solutions for each M .  

t If the pair ( A ,  B) yields a solution, (A ,  -B) is a solution with the same velocity md 
pressure fields except for a reverse circulating motion. This is easily seen from the form of 
the Taylor series expansion. The convergence of the present method of finding solutions 
became slower and slower near B = 0, and it was necessary to stop at B = 0.18. 
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Since M = J / K 2 ,  where J is the kinematic momentum transfer, J must be posi- 
tive and larger than a critical value J ,  = 3.65K2. 

The velocity and pressure profiles are given in a series of figures. In  figures 3-9, 
we see that the axial velocity at  the axis is away from the point of singularity in 

rK/zv 

FIGURE 3. w-curve: B = 0.180. 

rK/zv . 
FIGURE 4. w-curve: B = 0.800. 

rK/zv 

FIGURE 5. w-curve for A = 0 (vortex with a thin wire in the core). 
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most of the solutions. There is a solution (figure 5), however, in which the axial 
velocity at the axis of the core is precisely zero, and there is a range ( A  > 0) 
in which the velocity is toward the singularity. As A decreases from zero to 
- 4 2  there is a deficiency of velocity at the axis. This is finally wiped out for 
A < -42  and for larger A there is simply a thin upward jet in the vortex core. 

rK/zu 

FIGURE 6. w-curve: B = 1.10. 

rK/zu 

FIGURE 7. w-curve: B = 1-70. 

rK/zu 

FIGURE 8. w-curve: B = 5.02. 
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These features of the axial velocity profile are understandable from the view- 
point of energy variation. Thus, it is easily shown that if E is the total of pressure 
energy and kinetic energy, the energy variation following particles moving along 
the axis is 

-=- dE 2K6dA($ -_  
d t  v324 

For example, when the velocity is away from the singularity ( A  < 0) and in the 
range Aa < 2, the particle gains energy from its surroundings, as the faster 
moving fluid just out from the axis exerts a drag in the direction of the flow. 
When (0 < A < J2) the fluid moving toward the singularity is imbedded in fluid 
moving the other way. The result is a loss of energy to the surroundings. Trial 
integrations for A > 4 2  suggested that there is no branch of the A = A(B) curve 
for this range of A .  

rK/zv 

FIGURE 9. w-curve: B = 10.02. 
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FIGURE 10. w-curve: B = 0.180. 

The theoretical behaviour of the axial velocity far from the axis is w -+ K/r J2, 
and this was verified by all the numerical integrations. 

The circulating velocity curves (figures 10-13) are all similar. We see, however, 
in figure 13, that as B tends to infinity the swirling motion approaches solid rota- 
tion in the core, changing more and more abruptly to a vr-vortex outside. In  all 
cases, of course, v -+ K/r as r 3 co. 
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FIGURE 11. 2)-curve: B = 1.10. 
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FIGURE 12. v-curve: B = 1.70. 
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FIGURE 13. 2)-curve: B = 10.02. 
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The outward-motion curves or u-curves (figures 14-1 7) have two characteristic 
shapes. In  all cases there is inward motion at the outer edges of the vortex, as 
indicated by the theoretical behaviour u + - v/r, and outward motion in most 
of the vortex core. In  some cases, however, as in figures 14 and 15, inward motion 

rK/zv 

FIGURE 14. u-curve: B = 0.180. 

FIGURE 15. u-curve: B = 0.800. 
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FIGURE 16. u-curve: B = 1.70. 
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can occur near the axis. It is important to notice, of course, that v and w are large 
and of the same order ( -  K/r)  while u is extremely small in a well-developed 
vortex. 
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FIGURE 17. u-curve: B = 10.02. 
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FIGURE 18. p-curve: B = 0.180. 
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FIGURE 19. p-curve: B = 1.70. 
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The pressure is determined completely by the centrifugal force in the boundary- 
layer approximation, so that it drops monotonically from zero outside to a 
negative minimum a t  the axis, as shown in figures 18 and 19. 

The radius of the vortex boundary layer, 13, is an interesting feature of the 
solution. Over the entire range of the numerical integrations, the value of x at, 
say, maximum v, decreases only by a factor of 2 or so. If we neglect this variation 
we can write 6 w (ZV/K)  c-4. 

5. Vortices in confined fluids 
Intense vortices occur frequently in fluids. One kind is the ‘bathtub drain’ 

vortex which is characterized by the presence of a free surface, and is probably 
not related closely, if at  all, to the vortex of this paper. Another is the vortex 
without free surface which has a rigid boundary like the bottom of the vessel in 

I I 
\ I 

FIGURE 20. Schematic picture of plate boundary layer, 

the experiment of figure 1. The latter may be closely related to the meteorological 
vortices, tornadoes, dust whirls and water spouts (if we adopt the virtual viscosity 
concept), although the atmospheric vortices are probably ‘buoyancy driven’ 
rather than ‘momentum driven ’. It seems very likely that tornadoes, for example, 
are vr-vortices. We have at least one very reliable set of observations that indi- 
cates this, namely eight pressure observations in the outskirts of a tornado that 
passed through an NACA laboratory in Cleveland, Ohio (Lewis & Perkins 1953). 
They yielded the precise pressure distribution of a vr-vortex if we assume a 
balance of centrifugal and pressure gradient forces as in the vortex of this paper. 
The pressure observations were at  the ground, and if we assume that they reflect 
the velocity of circulation in the free air, rather than in the ground boundary 
layer (as supposed by Lewis & Perkins) we obtain a reliable estimate of K of 
7.5 x lo7 cm2/sec. 

We can imagine a schematic picture of flow from the plate or ground boundary 
layer in the experimental and geophysical vortices as in figure 20, and i t  is 
tempting to try to fit one of the theoretical vortices of this paper ( A  < - 4 2 )  
to this flow with a virtual source at some great distance below the plate. 
One would have to suppose that the velocity distribution as the fluid leaves the 
plate is nearly the same as in the infinite vortex at some definite section. 
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In  fact this is far from the truth in the experiment. Measurements show, for 
example, that w drops off much faster than K/r.J2 at the outer edge of the core. 
We cannot hope, therefore, to get agreement between experiment and theory 
unless we compare them at such a great distance from the plate that the slight 
viscous effect will have enough time to cause a changeof velocity distribution from 
that which the fluid has when it leaves the plate boundary layer to that which it 
has in the infinite vortex. Aplausible estimate of this distance Az can be obtained 
by assuming that the theoretical vortex of this paper must suffer a change of 
radius AS over this distance of the same order as the radius 6 itself just above 
the plate. Thus, from (6), we have Az/AS N l/ec-&, and, putting AS/S N 1, we get 
Az N S/ecA. Since c-i N 1 and, in the experiment, S N 1 em, e N we would 
need a height Ax N lo3 cm before we could expect any significant effect of vis- 
cosity transforming the vortex into one resembling the theoretical vortex of this 
paper. A similar calculation for a tornado yields lo6 cm, or about the depth of the 
troposphere, if we take E = 10-2. The above reasoning indicates that the experi- 
mental vortex as observed in the laboratory is not a member of the family of 
vortices of this paper, and a separate theory is necessary to discuss its features. 
This may also be true of atmospheric vortices, at  least near the ground. 

The research was supported by the Office of Naval Research and the U.S. 
Weather Bureau. The author wishes to thank Dr Joseph Smagorinsky for his 
help in the computational work of the paper. 
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A 
1.26 
I a24 
1.21 
1-19 
1.16 
1-13 
1.11 
1.08 
1.05 
1.02 
0.991 
0.960 
0.929 
0.897 
0.864 
0.831 
0-797 
0.763 
0.728 
0.692 
0.656 
0.619 
0.581 
0.543 
0.504 
0.465 
0.425 
0.384 
0.343 
0.301 
0.258 
0.215 
1.171 
0.126 
0.082 
0.036 

- 0.010 
- 0.057 
- 0.105 
-0.153 
- 0.202 
- 0451 
- 0.301 
- 0.352 
- 0.403 
- 0.456 
- 0.508 
- 0.562 
- 0.616 
- 0.670 
-0.726 
- 0.782 

B 

0.160 
0.180 
0.200 
0.220 
0,240 
0.260 
0.280 
0.300 
0.320 
0.340 
0.360 
0.380 
0.400 
0.420 
0.440 
0.460 
0.480 
0.500 
0.520 
0.540 
0.560 
0.580 
0.600 
0.620 
0.640 
0.660 
0.680 
0.700 
0.720 
0.740 
0.760 
0.780 
0.800 
0.820 
0.840 
0.860 
0.880 
0.900 
0.920 
0.940 
0.960 
0.980 
1.00 
1.02 
1.04 
1.06 
1.08 
1.10 
1.12 
1.14 
1.16 
1.18 

c-* A B c-f A B c-f 
4.45 -0.838 1.20 2.36 - 6.89 2.66 1.37 
4.35 -0.896 1.22 2.34 - 7.11 2.70 1.36 
4.26 -0.953 1.24 2.32 - 7.33 2.74 1.34 
4.18 -1.01 1.26 2.30 - 7.56 2.78 1.32 
4.11 -1.07 1.28 2.28 - 7.79 2.82 1.31 
4.04 -1.13 1.30 2-26 - 8.03 2-86 1.29 
3.97 -1.19 1.32 2.24 - 8.26 2.90 1.28 
3.90 -1.25 1.34 2.22 - 8.51 2.94 1.26 
3.84 -1.32 1.36 2.20 - 8.75 2.98 1.25 
3.78 -1.38 1.38 2.18 - 9.00 3.02 1.23 
3.73 -1.41 1.39 2.17 - 9.25 3.06 1.22 
3.68 -1.44 1.40 2.16 - 9.50 3.10 1.21 
3.62 -1.47 1.41 2.15 - 9.76 3-14 1.19 
3.57 -1.51 1.42 2.15 -10.0 3.18 1.18 
3.53 -1.54 1.43 2.14 -10.3 3.22 1.17 
3.48 -1.57 1-44 2.13 -10.6 3.26 1.15 
3.44 -1.60 1.45 2.12 -10.8 3.30 1.14 
3.39 -1.64 1.46 2.11 -11.1 3.34 1-13 
3.35 -1.67 1.47 2.10 -11.4 3.38 1.12 
3.31 -1.70 1.48 2.09 -11.6 3.42 1.11 
3.27 -1.73 1.49 2.08 -11.9 3.46 1.09 
3.23 -1.77 1.50 2.08 -12.2 3.50 1.08 
3.19 -1.84 1.52 2.07 -12.5 3.54 1.07 
3.16 -1.90 1.54 2.04 -12.8 3.58 1.06 
3.12 -1.97 1.56 2.02 -13.1 3.62 1.05 
3.08 -2.04 1.58 2.01 -13.4 3.66 1.04 
3.05 -2.18 1.62 1.98 -13.7 3.70 1.03 
3.02 -2.33 1.66 1.95 -14.0 3.74 1.02 
2.98 -2.47 1.70 1.92 -14.3 3.78 1.01 
2.95 -2.62 1.74 1.89 -14.6 3.82 1.00 
2.92 -2.78 1.78 1.87 -14.9 3.86 0.990 
2.89 -2.93 1.82 1.83 -15.2 3.90 0.981 
2.86 -3.09 1.86 1.80 -15.6 3.94 0.971 
2.83 -3.25 1.90 1.76 -15.9 3.98 0.962 
2-80 -3.42 1.94 1.75 -16.2 4.02 0.953 
2.77 -3.58 1.98 1.72 -16.6 4.07 0.942 
2.75 -33.75 2.02 1.70 -17.1 4-12 0'931 
2.72 -33.93 2.06 1.68 -17.5 4.17 0.921 
2.69 -4.10 2.10 1.65 -17.9 4.22 0.911 
2.66 -4.28 2.14 1.63 -18.4 4.27 0.900 
2.64 -4.46 2.18 1.61 -18.8 4.32 0.891 
2.61 -4.65 2.22 1.58 -19.2 4.37 0.881 
2.59 -4.84 2.26 1.56 -19.7 4.42 0.871 
2.56 -5.03 2.30 1.54 -20.1 4.47 0.862 
2-54 -6.22 2.34 1.52 -20.6 4.52 0.853 
2.52 -5.42 2.38 1.50 -21.1 4.57 0.844 
2.49 -5.62 2.42 1.48 -21.6 4.62 0.835 
2.47 -5.82 2.46 1.46 -22.0 4.67 0.827 
2.45 -6.03 2.50 1.44 -22.5 4.72 0.818 
2.42 -6.24 2.54 1.43 -23.0 4.77 0.810 
2.40 -6.45 2.58 1.41 -23.5 4.82 0.802 
2.38 -6.67 2.62 1.39 -24.0 4.87 0.794 

TABLE 1. List of triples (A ,  B, c-f) yielded 1: 

A B c-f 
-24.5 4.92 0.786 
-25.0 4.97 0.778 
-25.5 5.02 0.771 
-26.0 5.07 0.763 
-26.6 5.12 0.756 
-27.1 5.17 0.749 
-27.6 5.22 0.742 
-28.2 5.27 0.735 
-28.7 5.32 0.728 
-29.3 5.37 0.721 
-29.8 5.42 0.715 
-30.4 5.47 0.708 
-31.0 5.52 0.702 
-31.5 5.57 0.696 
-32.1 5.62 0.690 
-32.7 5.67 0.684 
-33.3 5.72 0.678 
-33.9 5.77 0.672 
-34.5 5.82 0.666 
-35.1 5.87 0.660 
-35.7 5.92 0.655 
-36.3 5.97 0.649 
-37.0 6.02 0.644 
-37.6 6.07 0.639 
-38.2 6-12 0.634 
-38.9 6.17 0.628 
-39.5 6.22 0.623 
-40.2 6.27 0.618 
-440.8 6.32 0.613 
-41.5 6.37 0.609 
-42.1 6.42 0.604 
-42.8 6.47 0.599 
-43.5 6.52 0.595 
-44.2 6.57 0.590 
-44.9 6.62 0.586 
-45.6 6.67 0.581 
-46.3 6.72 0.577 
-47.0 6.77 0.572 
-47.7 6.82 0.568 
-48.4 6.87 0.564 
-49.1 6.92 0.560 
-49.8 6.97 0.556 
-50.6 7.02 0.552 
-51.3 7.07 0-548 
-52.1 7-12 0.544 
-52.8 7.17 0.540 
-53.6 7.22 0'536 
-54.3 7.27 0.533 
-55.1 7.32 0.529 
-55.9 7.37 0.525 
-56.6 7.42 0.522 
-57.4 7.47 0.518 

)y numerica1 integratioi 

A B 

- 58.2 7.52 
- 59.0 7.57 
- 59.8 7.62 
- 60.6 7.67 
- 61.4 7.72 
- 62.2 7.77 
- 63.1 7.82 
- 63.9 7.87 
- 64.7 7.92 
- 65.5 7.97 
- 66.4 8.02 
- 67.2 S O 7  
- 68.1 8.12 
- 69.0 8.17 
- 69.9 8.22 
- 70.7 8.27 
- 71.6 8.32 
- 72.5 8.37 
- 73.4 8.42 
- 74.3 8.47 
- 75.2 8.52 
- 76.1 8.57 
- 77.0 8.62 
- 77.9 8.67 
- 78.9 8-72 
- 79.8 8'77 
- 80.7 8.82 
- 81.7 8.87 
- 82.6 8.92 
- 83.6 8.97 
- 84.5 9.02 
- 85.5 9.07 
- 86.5 9.12 
- 87.5 9.17 
- 88.5 9.22 
- 89.4 9.27 
- 90.4 9.32 
- 91.4 9.37 
- 92.4 9.42 
- 93-5 9.47 
- 94.5 9.52 
- 95.5 9.57 
- 96.5 9.62 
- 97.6 9.67 
- 98.6 9.72 
- 99.7 9.77 
-100.7 9.82 
-101.8 9.87 
-102.8 9.92 
-103.9 9.97 
-105.0 10.02 
- - 

n. 

C-f 

0.515 
0.51 1 
0.508 
0.504 
0.501 
0,498 
0.495 
0.491 
0.488 
0.485 
0.482 
0.479 
0.476 
0.473 
0.470 
0.467 
0.464 
0.461 
0.459 
0.456 
0.453 
0-450 
0.448 
0.445 
0.442 
0.440 
0.437 
0.435 
0.432 
0.430 
0.427 
0.425 
0.422 
0.420 
0.418 
0-415 
0.413 
0.411 
0.409 
0.406 
0.404 
0.402 
0.400 
0.398 
0.396 
0.394 
0.392 
0.390 
0.388 
0.385 
0.383 
- 
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li’IcEuim 1 (PLATE 1). Experimental vortex. ‘L‘his vortex is created by withdrawing wnlw 
from the axis of a rotating vessel 1 m high and 30 crn in diameter. The sink is just below thc: 
free surface at the top of the figure. The motion near the axis is one of strong rotation super- 
imposed on a strong motion toward the sink. This is indicated by the spiral nature of the 
streaks on the -second time-exposure caused by the ahlminum tristearate tracer. The 
vortex extends to the bottom of the vessel where there is a layer of particles. This explains 
the dense collection of particles near the axis. 

LONG (Pacing p .  G24) 


